

Correlated Solutions Inc VIC-3D , 3D - Digital Image Correlation

For Non Contact Full Field Displacement and Strain Measurement

And Modal Analysis.

A Brief Application Note on the Tests Carried out by Pyrodynamics

At Various Organizations in India using VIC-3D, 3D DIC System.

Abhishek G Director & CTO PYRODYNAMICS Plot No 272 KIADB Industrial Area Phase 2 Harohalli ; Taluka Kanakpura Dist. Ramanagaram Bengaluru Rural - 562 112 Karnataka State – India

Tel:- +91 9686478833 Email:- pddic.ag@gmail.com

Web:- www.pyrodynamics-india.com Facebook:- Pyrodynamics Instagram:- pyrodynamics_india

DIC Measures Displacements.

Strain is a Derivative of Displacement. Lagrange Strain tensor is used for calculation of Strains

Contour Co Ordinates:- X, Y and Z ; Displacement:- u, v and w.

And

Strains:- ε_{xx} , ε_{yy} , ε_{xy} , ε_1 , ε_2 , Von Mises, Tresca

and Directions of Principal Strains

VIC-3D System

Michael Sutton Jean-Jose Orteu Hubert Schreier

Image Correlation for Deformation and Shape Measurements

Basic Concepts, Theory and Applications

Experiment	Fracture Process Zones in Concrete Structures
System Used	VIC-2D, 2D Digital Image Correlation System.
Loading Conditions	Static Load
Camera Used	Point Grey Research Grasshopper 2MP Camera, 15fps
Image Frame Capture	One Image at every discrete load step.

भारतीय विज्ञान संस्थान

बेंगलूर, भारत

Experimental Set up.

INDIAN INSTITUTE OF SCIENCE Bangalore, India

Structures Laboratory

Department of Civil Engineering.

Experimental Set up.

- 28 –Day Compressive Strength of the concrete Mix:-37MPa.
 - Concrete Coarse Aggregate Size:- 20 mm.
- No of Reinforced Bars= 4

Scale: 1:12

0

Specimen	Ø (mm)	n	A_{s} (mm ²)	S (mm)	L (mm)	W _f (mm)	D(mm)	b _{rib} (mm)	d _{rib} (mm)
LBF1	20	4	1256	2600	3200	500	560	180	380

- □ 3D DIC Measurements carried out at the mid span of the beam (1425mm to 1775mm) using VIC-3D-RT, Real Time 3D DIC System .
- □ AOI:- 350 mm x 100 mm in the web and 350 mm X 253 mm in the flange.
- □ Camera:- Two point grey flea2 (1624x 1224 Pixels, 15 fps) firewire 1394b with Schneider 17mm lenses.
- □ Image Captured every 10 seconds.
- \Box Calibration Grid:- 12x9x25 grid with a grid spacing of 25mm
- □ Subset:- 75 X 75 Pixels.
- Electrical Resistance Strain Gage Bonded on the reinforced bar at the mid section of the beam.
- LVDT to measure Displacement mounted at the underside of the mid section of the beam

Loading Protocol of the RC Beam.

- □ The loading protocol was to simulate ambient traffic between simulated test trucks (TT).
- In a real-world situation, it is required to collect moving vehicles data for designing the various structural members in a bridge.
- A real bridge would have experienced many smaller service loads as well as maybe some isolated unknown higher overloads.
- In this present study a series of service-level cycles are applied in between test trucks. These test trucks were chosen to represent the case of structural load testing in the field. TTs were variable in magnitude
- □ Loading Method:- Load Control 3 Point Bending.

Number of Loading Phases:- 7Total Number of Load Cycles:- 70Rate of Loading:- 4kN/sec.Ultimate Failure Load:- 810 kN.

□ Crack observed in the Sixth Phase at peak load of 670 kN.

Beam Failed at 810 kN.

Speckle Images

Image no 552 at the peak Load of phase 7 of the Loading cycle.

Image no 553 - just after the load crossed phase 7-Specimen cracked at this Load.

Final image – DIC Image No 1230.

The Flange and web are at a different distance from the cameras. The Flange had a smaller speckle size compared to the web. The camera was focused on the web and since the flange had a smaller speckle it was in focus as well

PYRO DYNAMICS Time Vs Strain in the High Strain Zone

PYRO DYNAMICS Comparison of DIC and Strain Gage Results - ε_{xx} At the Mid Section of the Beam

PYRO DYNAMICS Zones

Very Good Linearity observed in the strain field at Peak Loads of Different Phases of Loading.

PYRO DYNAMICS DIC Results – "V" Displacement Plots

Full field "V" Displacement plot obtained at Peak Load of 800 KN during Phase 7

Load	Peak	Development of Cracks
Phase	Load	
	(kN)	
Phase 1	180	Νο
Phase 2	200	No
Phase 3	300	No
Phase 4	450	No
Phase 5	500	No
Phase 6	570	The growth of existing cracks was seen in sixth phase at 670 kN.
Phase 7	800	The cracks opened by 1mm width at 765 kN. Multiple cracks were seen in flange. The supports crushed at 765 kN. The spalling of the concrete was seen at the center of the beam near the top of flange at 800 kN. The beam failed at 810 kN.

AE parameters and strain at various Loads

Load Phase	Phase-I	Phase-II	Phase-III	Phase-IV	Phase-V	Phase-VI	Phase-VII
Load cycle peak-load (kN)	180	200	300	450	500	570	800
DIC Image Number	36	78	137	221	313	462	552
Strain in Steel. (με)	655	733	1111	1680	1932	2289	2231
Strain in Concrete -DIC (με)	396	347	591	1127	1115	1349	1749
Displacement "V" (DIC – mm)	1.78	2.06	3.11	4.86	5.40	5.78	7.28
Displacement – LVDT (mm)	1.54	1.69	2.51	3.80	4.31	5.12	5.98
Displacement "W" (DIC – mm)	0.63936	0.98617	1.45246	1.97643	2.19309	2.46631	3.36197

Observations

- High Strain Zones were observed during the fifth phase of the loading cycle. The structure fractured precisely at these zones.
- ✤ The growth of cracks was observed in sixth phase at 670 kN.
- ✤ The cracks opened by nearly 1mm width at 765 kN.
- Multiple cracks were developed in flange & the supports crushed at 765 kN.
- The spalling of the concrete was seen at the center of the beam near the top of flange at 800 kN. The beam failed at 810 kN.
- Crack profiling can be obtained along the entire length of the span using AE technique. Full field strain (or high strain) zones is obtained from DIC technique in the area of measurement which helps in early prediction of the crack that would develop. AE provides global information to identify and confirm the critical locations whereas DIC provides detail local information. A combination of AE technique and DIC techniques is useful in determining the state of damage of large concrete structures in service.

Experiment	Fracture Process Zones in Concrete Structures
System Used	VIC-2D, 2D Digital Image Correlation System.
Loading Conditions	Static Load
Camera Used	Point Grey Research Grasshopper 2MP Camera, 15fps
Image Frame Capture	One Image at every discrete load step.

Experimental Set Up

A speckle pattern was applied on the concrete Beam with a notch under test.

Dimensions of the concrete beam:- 750 mm (L) X190mm (H)X 95 mm (D)

The Beam had strain gages and Acoustic Emission Sensor mounted on the back side.

The strain gages were interfaced to SCAD 500 Strain Measurement System

Load: - 3 Point Bending.

The Load increased upto 11.46KN and began to drop. The concrete beam underwent internal cracking at 11.46 KN and this is clearly seen in the strain plots.

-0.409844

-0.413375

-0.416906

-0.420438

-0.423969

-0.4275

PYRO DYNAMICS

 ϵ_{xx} Plots at Different Loads after YRO DYNAMICS Smoothening Constants 9 KN 11.46 KN **8 KN** 6 KN 7 KN exx [um/m] - I 9300 ALL DESCRIPTION OF THE OWNER. 8678.12 8056.25 7434.38 6812.5 6190.62 5568.75 PASS 1 N 7. U 11.1 4946.88 4325 **5 KN** Construction of the second second ないないないないないないないないでものである 3 KN 2 KN **4 KN** 1 KN 3703.12 3081.25 South States 2459.38 1837.5 1215.62 Sector Sector State of the state San Shares 593.75 -28.125 -650

EXECUTION Profile of ε_{xx}

593.75

-28.125

-650

Experiment	Fracture Process Zones in Concrete Structures
System Used	VIC-2D, 2D Digital Image Correlation System.
Loading Conditions	Static Load
Camera Used	Point Grey Research Grasshopper 2MP Camera, 15fps
Image Frame Capture	One Image at every discrete load step.

EXPERIMENTAL SET UP

Under load the crack opens in the X Direction

ε_{xx} (με)

Experiment	Fracture Process Zones in Concrete Structures
System Used	VIC-2D, 2D Digital Image Correlation System.
Loading Conditions	Static Load
Camera Used	Point Grey Research Grasshopper 2MP Camera, 15fps
Image Frame Capture	One Image at every discrete load step.

Experimental Set Up

A speckle pattern was applied on the concrete Beam under test.

Area of Measurement:- 300 mm (L) X 750 mm (H) The Beam had strain gages and Acoustic Emission Sensor mounted on the back side.

The load was applied in a UTM and images captured at 30KN,50KN,70KN,90KN and in steps of 10 KN from 90 to 200 KN.

The Beam failed at 200 KN.

A LVDT was mounted at the bottom of the beam and the DIC results matched pretty well with the Displacements measured using the LVDT.

Fracture processing zones indicated by AE sensors and DIC matched pretty well.

190KN

-0.938844

Since the concrete beam under load has a downward displacement the DIC shows a negative value.

The Red zone shows a lower displacement.

The Blue Zone shows the highest displacement.

The scale does not have any sign change indicating displacement in one direction.

V [mm]

-0.545243

ϵ_{xx} Plot at Different Loads

Experiment	Retrofitted CFRP Wrapped Concrete Bare Frame
System Used	VIC-3D, 3D Digital Image Correlation System.
Loading Conditions	Quasi-Static Load
Camera Used	Basler 8.9Mp, 43 fps, USB 3.0 CMOS Cameras.
Image Frame Capture	Two Images per second.

Retrofitted CFRP Wrapped Concrete Bare Frame Test

Structure Details :-

Concrete Column Bare Frame.

Height = 3.15m ; Width = 400mm ; Thickness = 400mm

VIC-3D, 3D DIC System Set Up.

Cameras :- USB3.0 CMOS – 8.9 MP;43 fps with Schneider 10 mm Lenses – 2 Systems Connected to the Same Computer.

Image Capture:- 2 fps.

All cameras triggered simultaneously.

Image Correlation:-

- Subset Size:- 45 Pixels.
 Step size:- 11.
- ***** Strain Filter Size:- 29 Pixels.

Displacement Plot – U mm

-122.5

Strain Plot – ε_{vv} (%Strain)

- The Maximum Strain
- 6.4375 zones and the cracks 5.875 5.3125
- were observed on the 4.75
- 4.1875 Top and Bottom 3.625
- Junctions of the Left 1 9379

Column during loading. 0.8125

- Other than the
- junctions no significant cracks were observed at the Left column

1.375

0.25 -0.3125

-0.875

Experiment	Double Storied Concrete Bare Frame
System Used	VIC-3D, 3D Digital Image Correlation System.
Loading Conditions	Quasi-Static Load
Camera Used	Basler 8.9Mp, 43 fps, USB 3.0 CMOS Cameras.
Image Frame Capture	Two Images per second.

PYRO DYNAMICS Double Storeyed Concrete Bare Frame Test

Structure Details :-

Two Storeyed Concrete Column Bare Frame.

Height = 6m ; Width of Each Column = 400mm ; Thickness = 400mm

VIC-3D, 3D DIC System Set Up.

Cameras :- USB3.0 CMOS – 8.9 MP;43 fps with Schneider 10 mm Lenses – <mark>4 Systems Used.</mark>

Image Capture:- 2 fps.

All cameras triggered simultaneously.

Image Correlation:-

- ✤ Subset Size:- 45 Pixels. ✤ Step size:- 11.
- ***** Strain Filter Size:- 29 Pixels.

Experiment	Shock Table Impact Test
System Used	VIC-3D, 3D Digital Image Correlation System.
Loading Conditions	Impact Load
Camera Used	Basler 8.9Mp, 43 fps, USB 3.0 CMOS Cameras.
Image Frame Capture	33 frames per second.

Structure Details :-

Grouted Concrete Structure placed on a Shock Table.

Height = 1.5m ; Width = 3m

CASE STUDY 8

Shock Table Impact Test

VIC-3D, 3D DIC System Set Up.

Cameras :- 2 Systems Used

Cameras:- USB3.0 CMOS - 8.9 MP;

43 fps with Schneider 10 mm Lenses

All cameras triggered simultaneously using Hardware Trigger.

Image Correlation:-

- Subset Size:- 45 Pixels.
- * Step size:- 11.
- ***** Strain Filter Size:- 29 Pixels.

Displacement Plot – W mm

PYRO DYNAMICS Strain Plot – ε_{yy} % Strain

D **PYRO DYNAMICS** W [mm]

-3.8

Out of Plane Displacement <u>"W" mm a</u>fter impact.

Experiment	Full Field Strain Measurement on Concrete
	Columns

System Used VIC-3D, 3D Digital Image Correlation System.

Loading Conditions Static Load

Camera Used Point Grey Research Grasshopper 5MP Camera, 7.5fps

Image Frame One Image at every discrete load step. Capture

Concrete Column wrapped with PVC Sheet

A concrete column – 600mm long, 225mm Diameter was wrapped with a 7mm thick PVC sheet.

A Speckle pattern was applied on the PVC sheet.

VIC-3D System was used for measurements.

Camera:- Point Grey 5 MP Firewire Cameras.

Lenses:- 17mm Schneider Lens

Images were captured every 15 seconds.

Load Applied:- Compressive Load

Maximum Load:- 1260 kN

Strain Plot just before complete failure

eyy [um/m] -Lagrange 2420

2192.5

1965

1737.5

1510

1282.5

1055

827.5

600

372.5

145

-82.5

-310

-537.5

-765

-992.5

-1220

Load Vs Average Strain in the High Strain Zone

Strain Measurement on a Concrete Column

Compressive Load was applied on a Concrete Column 800 mm Long , 218mm Diameter.

 ϵ_{yy} at Peak Load – 1230 kN

Strain Plot shows the propagation of the Fracture Process Zone

 ϵ_{yy} just before failure

A concrete column – 800mm long, 75mm Diameter was wrapped with a 3mm thick GI sheet and was subject to a compressive load

Concrete Column wrapped with Galvanised Iron Sheet

PYRO DYNAMICS VIC-3D/2D Systems In India & UAE.

>Indian Institute of Technology – Kharagpur – Department of Civil Engineering. >Indian Institute of Technology – Kanpur – Department of Materials Science and Engineering. >Indian Institute of Technology – Roorkee– Department of Civil Engineering. >Indian Institute of Technology – Hyderabad – Department of Civil Engineering. >National Aerospace Laboratories – Bengaluru. >Indian Institute of Technology – Chennai – Department of Aerospace Engineering. >India Science Lab – General Motors Technical Centre – India. >Indian Institute of Technology – New Delhi – Department of Applied Mechanics. >Indian Institute of Technology – Chennai – Department of Engineering Design. >Indian Institute of Technology – Hyderabad – Department of Civil Engineering. ≻Vikram Sarabhai Space Centre – Thiruvananthapuram. >Central Glass and Ceramic Research Institute – Kolkatta. >Indian Institute of Science – Bengaluru – Department of Aerospace Engineering. >Indian Institute of Technology – Hyderabad – Department of Mechanical Engineering. >Indian Institute of Technology – Kharagpur - Department of Mechanical Engineering. >Indian Institute of Technology – Chennai – Department of Applied Mechanics. >Indian Institute of Science – Bengaluru – Department of Materials Engineering. >Indian Institute of Technology – Kharagpur – Tribology Laboratory. >Indian Institute of Technology – Kanpur – Department of Mechanical Engineering. ➢Indira Gandhi Centre For Atomic Research – Kalpakkam. ≻Tata Steel – Tatanagar. ➢GEITC – John Welch Technology Centre – Bengaluru. Masdar Institute of Technology – Abu Dhabi. KAUST – Saudi Arabia.

Advantages of Digital Image Correlation

- ✓ Non Contact and Full Field.
- \checkmark Setup time is less.
- ✓ Easy to use.
- ✓ Provides Full Field Displacement & Strain Fields.
- ✓ Full Field Modal analysis and Full Field Acceleration Measurement.
- ✓ Strain Resolution of 25 to 50 $\mu\epsilon$ or better.
- ✓ Displacement Resolution:- A few Microns to Sub Microns depending on the Field of View.

In Plane Displacement Resolution = 1/100000 of the Field of View.

Out of Plane Displacement Resolution = 1/50000 of the Field of View.

Field of View is defined as the Diagonal Distance of the Area of Interest.

- ✓ DIC Measurements can be made on any material:- Concrete, Metal, Plastics, Composites, Rubber, Human Skin…etc
- \checkmark Validation of FEM Data can be done easily.
- ✓ Direct interface to Matlab to Compare DIC and FEM Data.
- ✓ High Speed DIC and Modal Analysis.
- \checkmark Area of Measurement:- mm² to a few m²
- ✓ Strain Range:- Upto 100's of % Strain.
- ✓ High Strain Zones easily identified.
- ✓ Generally 5MP USB cameras with 75fps are used for DIC Measurements.

✓ However the recent trend is to use Cameras with a resolution of 8.9 to 12.3 Mega Pixels to carry out Strain Measurements on Large Structures Like Wind Turbine Blades, Wing of Air Craft, Space Craft Shells...etc. This way DIC Measurements are carried out with a good displacement and strain resolutions.

 \checkmark Cameras with 2 MP Resolution and frame rates of 162 fps are Available for Dynamic Measurements.

✓ Recent Trend is to use High Speed Cameras (10,000 fps upwards with 1 MP Resolution) to carry out High Strain Rate, Impact Measurements, Shock Tube Applications, Hopkinson Bar Tests...etc

- ✓ Recent Trend is that DIC has been successfully used for Non Contact Full Field Modal Analysis
- ✓ Recent Trend is DIC has been successfully used for measurements of Microscopic Images (In AFM or SEM), MEMS...etc.
- \checkmark The future is to use Volumetric Digital Image Correlation. VDIC has the promise and capability to carry out DIC Measurements insitu of the structure (Something that was carried out so far only through Fiber Optic Sensors).

This technique is still in the University Research and will be commercially available soon.

Limitations of DIC

× Optical Access of The Test Object is a must.

VIC-3D User Map - India.

PYRO DYNAMICS VIC-3D User Map – UAE & Gulf

Lets Think Collectively Thank You

Moto of Pyrodynamics

Abhishek G Director & CTO PYRODYNAMICS Plot No 272 KIADB Industrial Area Phase 2 Harohalli ; Taluka Kanakapura Dist. Ramanagaram Bengaluru Rural - 562 112 Karnataka State – India

Tel:- +91 9686478833

Email:- pddic.ag@gmail.com LinkedIn & Facebook:- Pyrodynamics

"A Company of Value Rather than a Company of Success"